This article appeared in the
August 2004 issue of

Builqu' AL

Supnnr' g Lo
m\m\% % “\\\m\%\\\

Subscribe instantly at
www.bijonline.com

« Free in the U.S.

- $18 per year in Canada and Mexico

- $96 per year everywhere else

http://www.bijonline.com

Welcome to
the Legacy
INntegration
Supplement

By David McGoveran
Sr. Technical Editor &
Consulting Industry Analyst

hat, exactly, does “legacy

integration” mean? Most old hands
in IT would certainly agree that integrating
a non-mainframe application with a
mainframe application would qualify. Of
course, our interpretation of legacy
integration has evolved over the years.
We now include the integration of almost
any applications, as long as the
architecture of one of the applications is
significantly older. Any application that
was not designed to support the
distributed architecture du jour, let alone
the many standards de facto and de jure,
is now said to be a legacy application.

We sometimes forget that early
integration efforts were primarily batch
file transfers or the later use of remote
job entry emulation, but | can personally
attest to some of this history. In the late
’70s and early '80s, | used these and
other techniques to integrate Unix
applications running on DEC PDP-11 and
then VAX-11 systems with various
mainframe applications. Tedious to
develop and slow, the approach was
predestined to be replaced. As early as
1983, | began using a shared database
machine to facilitate application
integration among minicomputers and
mainframes (with self-describing data
formats, | might add) and then moved to
asynchronous message processing in
1985. Although middleware standards
and products now make such efforts
easier and enable a broader range of
integration solutions, the underlying
technical issues and their solutions have
not changed very much.

In a sense, the legacy adjective has
nothing to do with deployment platform.
Older applications typically represent an
integration challenge, regardless of the
type of deployment platform. They were
written either for efficiency or to take
advantage of proprietary (possibly
obsolete) platform features. Tight coupling

fostered efficiency, but in the extreme, leading to brittle,
monolithic applications. Taking advantage of undocumented
side-effects was rarely considered a crime. And speaking
of documentation, even the most disciplined IT shops have
lost or failed to produce some critical documentation.
Almost by definition, legacy applications aren’t victims of
code bloat, let alone “self-documenting” code!

In this supplement, we focus on legacy integration
insofar as it involves mainframe applications. There are
many good reasons that mainframe applications represent
a special challenge to integration efforts, or perhaps better,
that the encroachments of integration efforts represent a
special challenge to mainframe users. Mainframe
performance, security, local resource, transaction
management, and so on, have always been more carefully
managed on the mainframe than other platforms.
Furthermore, the mainframe offered more robust facilities
for that purpose than were generally available on so-called
“open” platforms. Those same properties made the
mainframe environment less attractive for cheap,
distributed computing architectures, so that distributed
integration technologies have tended to develop outside
the mainframe first.

Today, the gap between the native architectures of
legacy applications and integration technologies has
widened. At the same time, mainframe vendors have
helped create integration standards that enable powerful
options for integration with those technologies.
Nonetheless, legacy integration remains for the foreseeable
future a critical challenge for business integration. Web
deployment, Web Services, XML, SOA and BPM have each
brought new issues to light, while raising the expectations
of business users regarding integration.

In our legacy integration supplement, we bring you the
views of experts on most of these issues. Michael
Rawlins, author of Using XML With Legacy Business
Applications, provides a guide to legacy application support
for XML. Well-known to many of our readers and the author
of several books on integration, David Linthicum teaches
the essential concepts for building an SOA involving legacy
systems and using Web Services. Mary Shacklett’s
interviews of IBM expert Jim Rhyne, Forrester analyst Phil
Murphy, and three customers about Web-based delivery of
mainframe resources explore several alternatives to Web
Services. In future issues, we’re certain to cover the BPM
aspects of legacy integration.

To all this, we’ve added two sets of interviews that will
provide insight into this market and associated
technologies. First, we are fortunate to have obtained the
views of IBM’s Jim Rhyne, distinguished engineer,
eServer Tools Technology and Enterprise Modernization,
and Scott Cosby, program director, WebSphere Business
Integration. Second, several industry analysts have given
us their views on legacy integration, including Dale
Vecchio of Gartner, Phil Murphy of Forrester Research,
Michael Thompson of The Butler Group, and Nathaniel
Palmer of Delphi Group.

We’ve attempted to keep this supplement from getting
too technical, while providing a balanced introduction to
some of the key concerns and issues of legacy
integration as they pertain to the mainframe. We hope
this will help you find your way to success if you face the
many challenges of integrating mainframe and non-
mainframe applications. hij

LIS-2 < Business Integration Journal ¢ Legacy Integration Supplement

